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Abstract—We present a new algorithm to reduce bases for 

Euclidean lattices. In contrast to the celebrated Lenstra-

Lenstra-Lovász (LLL) algorithm that uses the local Lovász 

exchange rule, the algorithm in this paper utilizes a global 

exchange strategy that is introduced by Bergman (1980). We 

show that the algorithm computes an LLL-reduced basis 

within polynomial time in the size of the input basis. 

Keywords-lattice basis reduction; LLL; Bergman exchange  

I.  INTRODUCTION  

Lattice basis reduction has been frequently used in many 
communication systems [1], such as GPS, frequency 
estimation, and particularly data detection and precoding in 
MIMO wireless communication systems, and has been 
applied in many other areas as well, such as factoring 
polynomials, breaking cryptosystems, solving Diophantine 
approximation problems, or solving subset sum problems; 
see [2] and references therein. In this paper, we investigate 
the common used notion: LLL lattice basis reduction. In the 
LLL algorithm [3], the crucial point is the so-called Lovász 
exchange rule, which is powerful to deal with lattice bases 
(each basis consists of a group of linear independent vectors) 
and makes the algorithm terminate within polynomial time. 

In fact, there exists another exchange rule to deal with 
more general structures. When one wants to deal with a 
group of linearly dependent vectors        , the Lovász 
exchange rule may not work, since there may exist an 
element in            ∑   

      which could become 
arbitrarily small but nonzero. To deal with this case, 
Bergman proposed an exchange rule in [1]. One can use it to 
separate the discrete component of            (e.g., in [4]), 
and in the dual sense, to find integer relations for a given real 
vector [5, 6, 7]. 

We now summarize three already-known exchange 
strategies as follows. Each of them depends on the norm of 
Gram-Schmidt vectors of the given basis. 

1. The Lovász exchange: choose the smallest index   
such that the Lovász condition (see section II for the 
definition) does not hold and exchange    and     . 

2. The Siegel exchange: choose the smallest index   such 
that the Siegel condition (see section II for the definition) 
does not hold and exchange    and     . 

3. The Bergman exchange: choose the smallest index   

        that maximizes      
    and exchange    

and     , where   
 
 is the  -th Gram-Schmidt vector of the 

basis         and   >4/3 is an appropriate constant. 

The Lovász exchange and the Siegel exchange can be 
alternatively used for LLL-reducing lattice bases, although 
the latter one is slightly weaker. In addition, both the two 
exchange rules are local strategies because that only two 
consecutive vectors are considered. In contrast, the Bergman 
exchange considers all vectors so that it is global. 

When    , i.e., there are only two input vectors, the 
Siegel exchange rule is equivalent to the Bergman exchange 
rule. Naturally, one will ask what is the relationship among 
them for    . As indicated above, the local exchange rules 
are not suitable to deal with linear dependent vectors. 
However, can we use the Bergman exchange rule to reduce 
lattice bases? To the author's best knowledge, there seems no 
existing result for this question. 

In this paper, we give an affirmative answer of the above 
specified question. We present an algorithm, named BLLL, 
which computes a reduced basis using the Bergman 
exchange rule. Given a basis                  with 
            , BLLL returns a reduced basis within 

       arithmetic operations on integers with binary length 
at most      . It is not difficult to reduce the total bit-

complexity bound to      
 

   
        by using modular 

arithmetic and fast matrix multiplication, as in Stojorhann’s 
LLL algorithm [8], where     is an arbitrary positive 
number and         is the linear algebra exponent. 

In fact, there are several difficulties to use the global 
Bergman exchange rule. The first one is that if the exchange 
position   decided by the Bergman exchange is equal to  , 
then there is no       to be exchanged. It is obvious that 
only considering the first     vectors is not enough. To 
circumvent this obstacle, we introduce another index   (see 
the BLLL algorithm) to control the index. The second 
difficulty is that LLL features a sub-reduced structure, i.e., if 
the exchange position is  , then the previous     vectors 
are already reduced, however, Bergman-based algorithm 
does not, because the Bergman exchange rule considers all 
indices instead two consecutive indices. This leads that it is 
difficult to control the bit size during the while loop. We use 
full size reduction instead of the partial size reduction to 
cope with this problem. 

A. Related Work 

For a detailed material of LLL and its application, we 
refer to the book [2] and references therein. We here only 
focus on those related to the present paper. In [9], Kaltofen 
presented a lattice reduction algorithm which uses modular 
arithmetic for the SizeReduce step and showed that the 
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Input: A basis  𝒃i 𝑖 𝑛 of a lattice Λ ⊆  𝑛   
Output: An LLL-reduced basis of Λ. 

1. Let 𝑘:  . 
2. While 𝑘  𝑛    do 

(a) SizeReduce(𝑘 +   𝑘). 
(b) If the Lovász condition holds for 𝑘 , then 

SizeReduce(𝑘 +   𝑘 ) for 𝑗  𝑘        
and set 𝑘: 𝑘 +  . 

(c) Else Exchange  𝑘 ; set 𝑘:    {𝑘  
   }. 

3. Return the current basis  𝒃𝑖 𝑖 𝑛. 

algorithm computes a reduced basis (see section II for 
definition) with bit-complexity bound         +     . 
Schnorr [10] proved a bound of         +        bit 
operations by employing floating-point arithmetic. Schnorr 
and Euchner [11] gave efficient implementations. Storjohann 

[8] achieved      
 

   
        bit operations by employing 

fraction-free Gaussian elimination, a modular approach and 
fast matrix multiplication. Koy and Schnorr's segment 
reduction [12] uses           arithmetic operations on  -
dimensional lattices with basis vector of Euclidean norm at 
most   . Nguyen and Stehlé's algorithm    [13] computes a 
reduced basis within          +     by employing 
floating-point arithmetic. Morel, Stehlé and Villard presented 
H-LLL [14] which has the same complexity bound with    

but with a simplified proof. The  ̃  algorithm [15] presented 
by Novocin, Stehlé and Villard also employs floating-point 
arithmetic and achieves complexity bound of         +
         . Saruchi, Morel, Stehlé and Villard [16] proposed 
a potential speed-up strategy by keeping only the most 
significant bits of the input basis. Fontein, Schneider, 
Wagner [17] presented a polynomial time version of LLL 
with deep insertions. For the moment, the best complexity 
result is due to Neumaier and Stehlé [18], whose algorithm 
terminates within             bit operations. 

Note that all algorithms appeared in the above work is 
based on the Lovász exchange rule. Schnorr [19, Section 2] 
gave a comparison on the Lovász exchange and the Bergman 
exchange rule. Just [20] uses the Lovász exchange rule and 
the Bergman exchange rule alternatively for the Diophantine 
approximation problem. Nevertheless, there seems no 
algorithm in literature that reduces lattice bases with the 
Bergman exchange rule. In this sense, the BLLL algorithm 
proposed in this paper is novel.  

However, we should note that the theoretical bit-
complexity bound of the naïve version of our Bergman-based 
reducing algorithm is even not as good as the original LLL 
algorithm. The reason is that we have to do full size 
reduction to control the bit size during the while loop of the 
algorithm. Anyway, it is hopeful to improve it further. For 
instance, all techniques in [8] apply to our algorithm, and 
hence resulting in an algorithm with bit complexity bound 
             .  

B. Notations 

For    , ⌈ ⌋ is the nearest integer to  . All vectors are 
in column and denoted in bold. Let     and      be the 
Euclidean norm and  -norm of a vector  , respectively. 

II. PRELIMINARIES 

In this section, we recall some definitions and notations 
that are helpful for the rest of this paper. 

A. Gram-Schmidt Orthogonalization 

Let                  be a full rank matrix and 
      

      
   its Gram-Schmidt orthogonalization 

(GSO) matrix with a unique upper triangular     
transform matrix          such that      , where 

       for        and     =
〈      

 〉

〈   
     

 〉
 for           

The matrix    has rational entries if   has, and then 
computing the GSO requires       operations over  . 

B. Lattices 

Let         be linearly independent vectors in   . A 
lattice   generated by         is the set             
∑   

      which consists of all integer linear combinations of 
       . We call         a basis of  . A lattice may have 
infinitely many bases when    , but all of them are 
associated by unimodular matrices (square integer matrices 
having determinant   ), however, each basis has a same 
number of vectors, which is called the dimension of the 
lattice. Without loss of generality, we assume     in this 
paper. Let            . The determinant of  , denoted 

by     , is defined as √        .  

C. Reduced Basis 

The goal of lattice reduction is to find a good basis of a 
given lattice, in the sense that the basis vectors are as short 
and orthogonal to each other as possible. Among many 
existing reduction methods, the LLL algorithm [9] is the 
most common used one. Given a basis of a lattice, the 
algorithm halts with an LLL-reduced basis.  

Let        ,       and                  

with GSO       . Then (1)   is size-reduced if |    |  
    for all        ; (2)   is said to satisfy the Lovász 

condition if     
          

   +       
    

    for all 

 ; (3)   is said to satisfy the Siegel condition if    
    

       
    for all  . Furthermore,   is called LLL-reduced 

if condition (1) and (2) hold;   is called  -reduced if 
condition (1) and (3) hold. 

If   is LLL-reduced, then   satisfies the Siegel condition 
with            , but the converse may not hold. In this 
sense, the  -reduced notion is slightly weaker than the LLL-
reduced notion. However, both conditions (2) and (3) lead to 
the following conclusion: for every nonzero     
          ,                 

D. The LLL Algorithm 

We recall the original LLL algorithm as Fig. 1. 

Figure 1.  The LLL algorithm. 
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Input: A basis  𝒃𝑖 𝑖 𝑛 of a lattice Λ ⊆  𝑛  
Output: A 𝛼-reduced basis of Λ. 

1. Compute the GSO 𝐵  𝐵 𝑈 and set  : 𝑛. 
2. While     do 

(a) The Bergman exchange rule determines the 

smallest 𝑘 that maximizes 𝛼𝑘  𝒃𝑘
   . 

(b) If 𝑘    then SizeReduce(𝑖 𝑗 ) for 𝑖  𝑘 +
  𝑘     and 𝑗  𝑖    𝑖       , and 
then Exchange 𝑘 . 

(c) If 𝑘    𝑛 then set  ≔    . 
(d) If 𝑘    𝑛  SizeReduce( 𝑖 𝑗 ) for 𝑖  𝑘 +

  𝑘     and 𝑗  𝑖    𝑖       , and 
then do the following: 
i. If  𝒃𝑘

     𝛼  𝒃𝑘  
   , then  ≔   

 . 
ii.Else Exchange 𝑘  and set  ≔  +  . 

3. Return the current basis  𝒃i 𝑖 𝑛. 

Exchange   : 
(a) Set         ;    

     
  ≔      

   +

   ‖  
 ‖ ;      

   ≔
   

        
 
  

   
     

 ;       ≔

 
   

   

   
     

 ;    
   ≔   

     
   

(b)        . 
(c) For             do:            . 

(d) For    +       set  

(
    

       

) ≔ (
       

  
) (

  
   

) (
    

       

)  

SizeReduce(   ): 
1. If |    |      then do the following: 

(a) Set   :     ⌈    ⌋  . 

(b) For             do:     ≔      ⌈    ⌋     . 

(c) Set     ≔      ⌈    ⌋. 
 

In [9],       , so that    . Assuming the fast 

arithmetic is employed, the algorithm correctly computes an 

LLL reduced basis within             bit operations.  

III. THE BLLL ALGORITHM 

In this section, we present our main algorithm BLLL (see 
Fig. 2) and prove its correctness. 

Figure 2.  The BLLL algorithm. 

If the Bergman exchange rule decides the exchange 
position    , then there is no      to be exchanged. We 
introduce another index    to deal with this case. The index   
is helpful for the correctness of the algorithm; see Lemma 1 
for details. 

In addition, for LLL, if the Lovász exchange decides that 
the exchange position is  , then the previous     vectors 
are already LLL-reduced. Particularly, the previous     
vectors are size reduced, which is very helpful to control the 
bit size during the LLL algorithm. Unfortunately, this may 
not hold for BLLL. To circumvent this obstacle, we adopt 

full size reduction in step 2b and 2d instead of the partial size 
reduction, which is useful in section IV. 

To prove the correctness, one should prove that the 
output basis satisfies the Siegel condition and that the output 
basis is size-reduced. The former one follows from the 
following observation. 

Lemma 1 At each execution of step 2(d)i,    
    

  ‖    
 ‖  for all    +        .  

Proof. From the procedure, we have       and 
‖    

 ‖         
   after execution of step 2(d)i. 

Particularly, after the first execution of step 2(d)i, we have 
      and      

         
   . 

Furthermore, the other steps in the while loop will not 
change    

    for    +      . In fact,    
    and 

‖    
 ‖   only changes possibly in step 2(d)ii, however, 

after execution of step 2(d)ii,   is updated to  +  .  
Proposition 2 If BLLL terminates, then it returns an α-

reduced basis.  
Proof. If the while loop of BLLL terminates, it must 

terminate at the time of     after an execution of step 2(d)i. 
By Lemma 1, the output basis satisfies the Siegel condition 
for all                . Furthermore, step 2d makes the 
output basis size-reduced.   

IV. ANALYSING BLLL 

The main goal of this section is to prove a bit complexity 
bound of BLLL. 

A. Termination 

Firstly, we show that the while loop terminates after at 
most polynomial exchanges. As in analyzing the classical 
LLL algorithm, we also measure the number of exchanges in 
the loop. On the one hand,   increases only if step 2(d)ii is 
executed, i.e., the exchange happens for      . On the 
other hand, at first glance it seems possibly that the algorithm 
executes step 2b forever. Therefore, the termination is 
proved at once if the number of exchanges can be bounded. 

The idea of the estimate on the number of exchanges is as 
follows. The first step is to define a function   (Definition 1) 
mapping a lattice basis to some positive number. This 
function is usually called as “potential function”. Our aim is 
to show that   has the following properties: It is not too 
large at the beginning, and does not change in the algorithm 
except that at each exchange step it decreases (at least) by a 

factor of √     . Therefore, only few exchanges can 
happen. 

Definition 1 Let             be a lattice basis. The 
potential of  , denoted  , is defined by 

  ∏    
       

 

   

 ∏(∏    
  

 

   

)

 

   

 ∏  

 

   

 

where   ≔       and the lattice               . 

Since    
       , the initial value of   can be 

bounded from above by    
       

   During the size-
reduction,   does not change, since the Gram-Schmidt 
vectors remain. Now we investigate the exchange step. 
Suppose that Exchange    happens, i.e.,    is exchanged 
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with     . For all    ,    does not change, and so    does 
not change; only    changes. We have that  

  
     

  
 

         
      

  

   
  

 √
 

 
+

 

 
 √ . 

Thus, each exchange decreases   by a multiplicative 

factor √   . Since we always have      , we can 
bound from above the number of exchanges by 

     √  
       

        . Hence we have the following 

Proposition 3 The BLLL algorithm terminates after at most 
       exchange steps. 

B. Bit-Complexity Bound 

It is not difficult to see that in each step we perform only 
a polynomial number of arithmetic operations (i.e., additions, 
multiplications, ⌈ ⌋, etc.) over  . To bound the bit complexity 
of the algorithm, it suffices to bound the bit sizes of the 
numbers that arise during and after each step. More precisely, 
we need to bound the denominators and numerators of the 
basis vectors   ’s, their Gram-Schmidt vectors   

 ’s, and the 
rational numbers     ’s. Let's begin with the Gram-Schmidt 

vectors, since they do not change during the size reduction. 
Lemma 4 Throughout the BLLL algorithm,    

   
  for      .  

For      and     , we have the following results.  

Lemma 5 Let    
      be the Gram-Schmidt vectors for 

integer vectors        . Then we have 

1.     
   

    for      , 

2.   
        for        , 

3.                 for        . 

Lemma 6 Throughout the algorithm, we have 

1.        √             for        , 

2.               for      . 

The standard proof for the bit-complexity bound of the 
classical LLL algorithm can be adapted for the proof, except 
that we need full size reduction such that            for 

        to prove that during the size reduction, 

|      ⌈    ⌋    |             . 
Putting things together, we get the following main results.  
Theorem 7 The BLLL algorithm computes an α-reduced 

basis of            and requires at most         
arithmetic operations on integers with binary length 
bounded by      . 

Proof. Step 1 takes       integer operations to compute the 
initial Gram-Schmidt orthogonalization. It is not difficult to 
conclude that each of either SizeReduce or Exchange cost 
     operations, so that the number of operations used in 
step 2 is      . Thus, it follows from Proposition 3 that the 
total number of integer arithmetic operations is bounded by 

      .  
The denominators     of the rational number computed 

in the algorithm is bounded from above by     , whose bit-

length is      . The numerators are at most    {      

     
   

    |  
     |}.  

From Lemma 6, we have                     . 

From Lemma 5, we have      
   

         
   

        

and |  
     |    

                   . Therefore, their 

bit-lengths are all at most      .   

V. FURTHER DISSCUSSION AND CONCLUSION 

We note that it is enough that              to 

guarantee the termination of BLLL. However, to control the 
bit size during the algorithm, we used            for 

       . This leads that BLLL needs to do full size 
reduction to keep the bit size not too large in the loop, and 
hence the number of operations over   for each while loop 
can only be bounded from above by       rather than 
      in the classical LLL algorithm. If fast arithmetic is 
employed, then BLLL returns a reduced basis within 
            bit operations.  

This result is not even as good as the classical LLL 
algorithm. However, we note that the techniques used in [8] 
(including fraction-free Gaussian elimination, modular 
arithmetic and fast matrix multiplication) apply to BLLL. 
This can make BLLL has the same bit-complexity as the 
lattice reduction algorithm in [8], namely              . 

Although the current bit complexity bound of BLLL is 
not competitive with the best LLL-type algorithms, we 
believe that there would be some approaches to take the 
advantages from the new exchange rule and hence resulting 
in an improving bit complexity bound. For instance, it should 
be very interesting to design a new size reduction strategy to 
decrease the number of arithmetic operations. Another 
intriguing topic is to consider how to use modular arithmetic 
or floating-point arithmetic to accelerate the algorithm 
further. 
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