
Reducing Lattice Bases with Bergman Exchange

Jingwei Chen, Yong Feng
*
, Wenyuan Wu

Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent

Technology, Chinese Academy of Sciences, Chongqing 400714, China

e-mail: {chenjingwei, yongfeng, wuwenyuan}@cigit.ac.cn

Abstract—We present a new algorithm to reduce bases for

Euclidean lattices. In contrast to the celebrated Lenstra-

Lenstra-Lovász (LLL) algorithm that uses the local Lovász

exchange rule, the algorithm in this paper utilizes a global

exchange strategy that is introduced by Bergman (1980). We

show that the algorithm computes an LLL-reduced basis

within polynomial time in the size of the input basis.

Keywords-lattice basis reduction; LLL; Bergman exchange

I. INTRODUCTION

Lattice basis reduction has been frequently used in many
communication systems [1], such as GPS, frequency
estimation, and particularly data detection and precoding in
MIMO wireless communication systems, and has been
applied in many other areas as well, such as factoring
polynomials, breaking cryptosystems, solving Diophantine
approximation problems, or solving subset sum problems;
see [2] and references therein. In this paper, we investigate
the common used notion: LLL lattice basis reduction. In the
LLL algorithm [3], the crucial point is the so-called Lovász
exchange rule, which is powerful to deal with lattice bases
(each basis consists of a group of linear independent vectors)
and makes the algorithm terminate within polynomial time.

In fact, there exists another exchange rule to deal with
more general structures. When one wants to deal with a
group of linearly dependent vectors , the Lovász
exchange rule may not work, since there may exist an
element in ∑

 which could become
arbitrarily small but nonzero. To deal with this case,
Bergman proposed an exchange rule in [1]. One can use it to
separate the discrete component of (e.g., in [4]),
and in the dual sense, to find integer relations for a given real
vector [5, 6, 7].

We now summarize three already-known exchange
strategies as follows. Each of them depends on the norm of
Gram-Schmidt vectors of the given basis.

1. The Lovász exchange: choose the smallest index
such that the Lovász condition (see section II for the
definition) does not hold and exchange and .

2. The Siegel exchange: choose the smallest index such
that the Siegel condition (see section II for the definition)
does not hold and exchange and .

3. The Bergman exchange: choose the smallest index

 that maximizes
 and exchange

and , where

 is the -th Gram-Schmidt vector of the

basis and >4/3 is an appropriate constant.

The Lovász exchange and the Siegel exchange can be
alternatively used for LLL-reducing lattice bases, although
the latter one is slightly weaker. In addition, both the two
exchange rules are local strategies because that only two
consecutive vectors are considered. In contrast, the Bergman
exchange considers all vectors so that it is global.

When , i.e., there are only two input vectors, the
Siegel exchange rule is equivalent to the Bergman exchange
rule. Naturally, one will ask what is the relationship among
them for . As indicated above, the local exchange rules
are not suitable to deal with linear dependent vectors.
However, can we use the Bergman exchange rule to reduce
lattice bases? To the author's best knowledge, there seems no
existing result for this question.

In this paper, we give an affirmative answer of the above
specified question. We present an algorithm, named BLLL,
which computes a reduced basis using the Bergman
exchange rule. Given a basis with
 , BLLL returns a reduced basis within

 arithmetic operations on integers with binary length
at most . It is not difficult to reduce the total bit-

complexity bound to

 by using modular

arithmetic and fast matrix multiplication, as in Stojorhann’s
LLL algorithm [8], where is an arbitrary positive
number and is the linear algebra exponent.

In fact, there are several difficulties to use the global
Bergman exchange rule. The first one is that if the exchange
position decided by the Bergman exchange is equal to ,
then there is no to be exchanged. It is obvious that
only considering the first vectors is not enough. To
circumvent this obstacle, we introduce another index (see
the BLLL algorithm) to control the index. The second
difficulty is that LLL features a sub-reduced structure, i.e., if
the exchange position is , then the previous vectors
are already reduced, however, Bergman-based algorithm
does not, because the Bergman exchange rule considers all
indices instead two consecutive indices. This leads that it is
difficult to control the bit size during the while loop. We use
full size reduction instead of the partial size reduction to
cope with this problem.

A. Related Work

For a detailed material of LLL and its application, we
refer to the book [2] and references therein. We here only
focus on those related to the present paper. In [9], Kaltofen
presented a lattice reduction algorithm which uses modular
arithmetic for the SizeReduce step and showed that the

630

2017 9th IEEE International Conference on Communication Software and Networks

978-1-5090-3820-6/17/$31.00 ©2017 IEEE

Input: A basis 𝒃i 𝑖 𝑛 of a lattice Λ ⊆ 𝑛
Output: An LLL-reduced basis of Λ.

1. Let 𝑘: .
2. While 𝑘 𝑛 do

(a) SizeReduce(𝑘 + 𝑘).
(b) If the Lovász condition holds for 𝑘 , then

SizeReduce(𝑘 + 𝑘) for 𝑗 𝑘
and set 𝑘: 𝑘 + .

(c) Else Exchange 𝑘 ; set 𝑘: {𝑘
 }.

3. Return the current basis 𝒃𝑖 𝑖 𝑛.

algorithm computes a reduced basis (see section II for
definition) with bit-complexity bound + .
Schnorr [10] proved a bound of + bit
operations by employing floating-point arithmetic. Schnorr
and Euchner [11] gave efficient implementations. Storjohann

[8] achieved

 bit operations by employing

fraction-free Gaussian elimination, a modular approach and
fast matrix multiplication. Koy and Schnorr's segment
reduction [12] uses arithmetic operations on -
dimensional lattices with basis vector of Euclidean norm at
most . Nguyen and Stehlé's algorithm [13] computes a
reduced basis within + by employing
floating-point arithmetic. Morel, Stehlé and Villard presented
H-LLL [14] which has the same complexity bound with

but with a simplified proof. The ̃ algorithm [15] presented
by Novocin, Stehlé and Villard also employs floating-point
arithmetic and achieves complexity bound of +
 . Saruchi, Morel, Stehlé and Villard [16] proposed
a potential speed-up strategy by keeping only the most
significant bits of the input basis. Fontein, Schneider,
Wagner [17] presented a polynomial time version of LLL
with deep insertions. For the moment, the best complexity
result is due to Neumaier and Stehlé [18], whose algorithm
terminates within bit operations.

Note that all algorithms appeared in the above work is
based on the Lovász exchange rule. Schnorr [19, Section 2]
gave a comparison on the Lovász exchange and the Bergman
exchange rule. Just [20] uses the Lovász exchange rule and
the Bergman exchange rule alternatively for the Diophantine
approximation problem. Nevertheless, there seems no
algorithm in literature that reduces lattice bases with the
Bergman exchange rule. In this sense, the BLLL algorithm
proposed in this paper is novel.

However, we should note that the theoretical bit-
complexity bound of the naïve version of our Bergman-based
reducing algorithm is even not as good as the original LLL
algorithm. The reason is that we have to do full size
reduction to control the bit size during the while loop of the
algorithm. Anyway, it is hopeful to improve it further. For
instance, all techniques in [8] apply to our algorithm, and
hence resulting in an algorithm with bit complexity bound
 .

B. Notations

For , ⌈ ⌋ is the nearest integer to . All vectors are
in column and denoted in bold. Let and be the
Euclidean norm and -norm of a vector , respectively.

II. PRELIMINARIES

In this section, we recall some definitions and notations
that are helpful for the rest of this paper.

A. Gram-Schmidt Orthogonalization

Let be a full rank matrix and

 its Gram-Schmidt orthogonalization

(GSO) matrix with a unique upper triangular
transform matrix such that , where

 for and =
〈

 〉

〈

 〉
 for

The matrix has rational entries if has, and then
computing the GSO requires operations over .

B. Lattices

Let be linearly independent vectors in . A
lattice generated by is the set
∑

 which consists of all integer linear combinations of
 . We call a basis of . A lattice may have
infinitely many bases when , but all of them are
associated by unimodular matrices (square integer matrices
having determinant), however, each basis has a same
number of vectors, which is called the dimension of the
lattice. Without loss of generality, we assume in this
paper. Let . The determinant of , denoted

by , is defined as √ .

C. Reduced Basis

The goal of lattice reduction is to find a good basis of a
given lattice, in the sense that the basis vectors are as short
and orthogonal to each other as possible. Among many
existing reduction methods, the LLL algorithm [9] is the
most common used one. Given a basis of a lattice, the
algorithm halts with an LLL-reduced basis.

Let , and

with GSO . Then (1) is size-reduced if | |
 for all ; (2) is said to satisfy the Lovász

condition if

 +

 for all

 ; (3) is said to satisfy the Siegel condition if

 for all . Furthermore, is called LLL-reduced

if condition (1) and (2) hold; is called -reduced if
condition (1) and (3) hold.

If is LLL-reduced, then satisfies the Siegel condition
with , but the converse may not hold. In this
sense, the -reduced notion is slightly weaker than the LLL-
reduced notion. However, both conditions (2) and (3) lead to
the following conclusion: for every nonzero
 ,

D. The LLL Algorithm

We recall the original LLL algorithm as Fig. 1.

Figure 1. The LLL algorithm.

631

Input: A basis 𝒃𝑖 𝑖 𝑛 of a lattice Λ ⊆ 𝑛
Output: A 𝛼-reduced basis of Λ.

1. Compute the GSO 𝐵 𝐵 𝑈 and set : 𝑛.
2. While do

(a) The Bergman exchange rule determines the

smallest 𝑘 that maximizes 𝛼𝑘 𝒃𝑘
 .

(b) If 𝑘 then SizeReduce(𝑖 𝑗) for 𝑖 𝑘 +
 𝑘 and 𝑗 𝑖 𝑖 , and
then Exchange 𝑘 .

(c) If 𝑘 𝑛 then set ≔ .
(d) If 𝑘 𝑛 SizeReduce(𝑖 𝑗) for 𝑖 𝑘 +

 𝑘 and 𝑗 𝑖 𝑖 , and
then do the following:
i. If 𝒃𝑘

 𝛼 𝒃𝑘
 , then ≔

 .
ii.Else Exchange 𝑘 and set ≔ + .

3. Return the current basis 𝒃i 𝑖 𝑛.

Exchange :
(a) Set ;

 ≔

 +

 ‖
 ‖ ;

 ≔

 ; ≔

 ;
 ≔

(b) .
(c) For do: .

(d) For + set

(

) ≔ (

) (

) (

)

SizeReduce():
1. If | | then do the following:

(a) Set : ⌈ ⌋ .

(b) For do: ≔ ⌈ ⌋ .

(c) Set ≔ ⌈ ⌋.

In [9], , so that . Assuming the fast

arithmetic is employed, the algorithm correctly computes an

LLL reduced basis within bit operations.

III. THE BLLL ALGORITHM

In this section, we present our main algorithm BLLL (see
Fig. 2) and prove its correctness.

Figure 2. The BLLL algorithm.

If the Bergman exchange rule decides the exchange
position , then there is no to be exchanged. We
introduce another index to deal with this case. The index
is helpful for the correctness of the algorithm; see Lemma 1
for details.

In addition, for LLL, if the Lovász exchange decides that
the exchange position is , then the previous vectors
are already LLL-reduced. Particularly, the previous
vectors are size reduced, which is very helpful to control the
bit size during the LLL algorithm. Unfortunately, this may
not hold for BLLL. To circumvent this obstacle, we adopt

full size reduction in step 2b and 2d instead of the partial size
reduction, which is useful in section IV.

To prove the correctness, one should prove that the
output basis satisfies the Siegel condition and that the output
basis is size-reduced. The former one follows from the
following observation.

Lemma 1 At each execution of step 2(d)i,

 ‖
 ‖ for all + .

Proof. From the procedure, we have and
‖

 ‖
 after execution of step 2(d)i.

Particularly, after the first execution of step 2(d)i, we have
 and

 .

Furthermore, the other steps in the while loop will not
change

 for + . In fact,
 and

‖
 ‖ only changes possibly in step 2(d)ii, however,

after execution of step 2(d)ii, is updated to + .
Proposition 2 If BLLL terminates, then it returns an α-

reduced basis.
Proof. If the while loop of BLLL terminates, it must

terminate at the time of after an execution of step 2(d)i.
By Lemma 1, the output basis satisfies the Siegel condition
for all . Furthermore, step 2d makes the
output basis size-reduced.

IV. ANALYSING BLLL

The main goal of this section is to prove a bit complexity
bound of BLLL.

A. Termination

Firstly, we show that the while loop terminates after at
most polynomial exchanges. As in analyzing the classical
LLL algorithm, we also measure the number of exchanges in
the loop. On the one hand, increases only if step 2(d)ii is
executed, i.e., the exchange happens for . On the
other hand, at first glance it seems possibly that the algorithm
executes step 2b forever. Therefore, the termination is
proved at once if the number of exchanges can be bounded.

The idea of the estimate on the number of exchanges is as
follows. The first step is to define a function (Definition 1)
mapping a lattice basis to some positive number. This
function is usually called as “potential function”. Our aim is
to show that has the following properties: It is not too
large at the beginning, and does not change in the algorithm
except that at each exchange step it decreases (at least) by a

factor of √ . Therefore, only few exchanges can
happen.

Definition 1 Let be a lattice basis. The
potential of , denoted , is defined by

 ∏

 ∏(∏

)

 ∏

where ≔ and the lattice .

Since
 , the initial value of can be

bounded from above by

 During the size-
reduction, does not change, since the Gram-Schmidt
vectors remain. Now we investigate the exchange step.
Suppose that Exchange happens, i.e., is exchanged

632

with . For all , does not change, and so does
not change; only changes. We have that

 √

+

 √ .

Thus, each exchange decreases by a multiplicative

factor √ . Since we always have , we can
bound from above the number of exchanges by

 √

 . Hence we have the following

Proposition 3 The BLLL algorithm terminates after at most
 exchange steps.

B. Bit-Complexity Bound

It is not difficult to see that in each step we perform only
a polynomial number of arithmetic operations (i.e., additions,
multiplications, ⌈ ⌋, etc.) over . To bound the bit complexity
of the algorithm, it suffices to bound the bit sizes of the
numbers that arise during and after each step. More precisely,
we need to bound the denominators and numerators of the
basis vectors ’s, their Gram-Schmidt vectors

 ’s, and the
rational numbers ’s. Let's begin with the Gram-Schmidt

vectors, since they do not change during the size reduction.
Lemma 4 Throughout the BLLL algorithm,

 for .

For and , we have the following results.

Lemma 5 Let
 be the Gram-Schmidt vectors for

integer vectors . Then we have

1.

 for ,

2.
 for ,

3. for .

Lemma 6 Throughout the algorithm, we have

1. √ for ,

2. for .

The standard proof for the bit-complexity bound of the
classical LLL algorithm can be adapted for the proof, except
that we need full size reduction such that for

 to prove that during the size reduction,

| ⌈ ⌋ | .
Putting things together, we get the following main results.
Theorem 7 The BLLL algorithm computes an α-reduced

basis of and requires at most
arithmetic operations on integers with binary length
bounded by .

Proof. Step 1 takes integer operations to compute the
initial Gram-Schmidt orthogonalization. It is not difficult to
conclude that each of either SizeReduce or Exchange cost
 operations, so that the number of operations used in
step 2 is . Thus, it follows from Proposition 3 that the
total number of integer arithmetic operations is bounded by

 .
The denominators of the rational number computed

in the algorithm is bounded from above by , whose bit-

length is . The numerators are at most {

 |
 |}.

From Lemma 6, we have .

From Lemma 5, we have

and |
 |

 . Therefore, their

bit-lengths are all at most .

V. FURTHER DISSCUSSION AND CONCLUSION

We note that it is enough that to

guarantee the termination of BLLL. However, to control the
bit size during the algorithm, we used for

 . This leads that BLLL needs to do full size
reduction to keep the bit size not too large in the loop, and
hence the number of operations over for each while loop
can only be bounded from above by rather than
 in the classical LLL algorithm. If fast arithmetic is
employed, then BLLL returns a reduced basis within
 bit operations.

This result is not even as good as the classical LLL
algorithm. However, we note that the techniques used in [8]
(including fraction-free Gaussian elimination, modular
arithmetic and fast matrix multiplication) apply to BLLL.
This can make BLLL has the same bit-complexity as the
lattice reduction algorithm in [8], namely .

Although the current bit complexity bound of BLLL is
not competitive with the best LLL-type algorithms, we
believe that there would be some approaches to take the
advantages from the new exchange rule and hence resulting
in an improving bit complexity bound. For instance, it should
be very interesting to design a new size reduction strategy to
decrease the number of arithmetic operations. Another
intriguing topic is to consider how to use modular arithmetic
or floating-point arithmetic to accelerate the algorithm
further.

ACKNOWLEDGMENT

The present work was partially supported by NSFC
(11501540, 11471307, 11671377), Chongqing Research
Program of Basic Research and Frontier Technology
(cstc2015jcyjys40001) and “Light of West China” Program
of CAS, Key Programs of CAS (QYZDB-SSW-SYS026),
and Research Program of Chongqing Municipal Education
Commission (KJ1705121).

REFERENCES

[1] D. Wubben, D. Seethaler, J. Jalden, and G. Matz. “Lattice reduction. ”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 70-91, 2011, doi:
10.1109/MSP.2010.938758.

[2] P. Q. Nguyen and B. Vallée, Eds., The LLL Algorithm: Survey and
Applications. Berlin: Springer, 2010, doi:10.1007/978-3-642-02295-1.

[3] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Mathematische Annalen, vol. 261, no. 4,
pp. 515-534, 1982, doi: 10.1007/BF01457454.

[4] J. Chen, D. Stehlé, and G. Villard, “A new view on HJLS and PSLQ:
Sums and projections of lattices,” in Proceedings of ISSAC 2013
(June 26-29, 2013, Boston, MA, USA), M. Kauers, Ed. New York:
ACM, 2013, pp. 149-156, doi:10.1145/2465506.2465936.

[5] G. M. Bergman, “Notes on Ferguson and Forcade's generalized
euclidean algorithm”, University of California at Berkeley,
unpublished notes, 1980, available from:
http://math.berkeley.edu/~gbergman/papers/unpub/FF_Euc.pdf.

633

[6] J. Håstad, B. Helfrich, J. C. Lagarias, and C.-P. Schnorr, “Polynomial
time algorithms for finding integer relations among real numbers,” in
Proceedings of STACS '86, ser. Lecture Notes in Computer Science,
B. Monien and G. Vidal-Naquet, Eds. Heidelberg: Springer, 1986, vol.
210, pp. 105-118, doi: 10.1007/3-540-16078-7_69.

[7] H. R. P. Ferguson and D. H. Bailey, “A polynomial time, numerically
stable integer relation algorithm,” NASA Ames Research Center,
Tech. Rep. RNR-91-032, 1992, available at
http://davidhbailey.com/dhbpapers/pslq.pdf.

[8] A. Storjohann, “Faster algorithms for integer lattice basis reduction,”
ETH, Department of Computer Scicence, Zürich, Switzerland, Tech.
Rep. 249, July 1996, available at
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/249.ps.gz.

[9] E. Kaltofen, “On the complexity of finding short vectors in integer
lattices,” in Computer Algebra: Proceedings of EUROCAL'83, ser.
Lecture Notes in Computer Science, J. A. van Hulzen, Ed. Springer,
1983, vol. 162, pp. 236-244, doi: 10.1007/3-540-12868-9_107.

[10] C.-P. Schnorr, “A more efficient algorithm for lattice basis reduction,”
Journal of Algorithms, vol. 9, no. 1, pp. 47-62, 1988, doi:
10.1016/0196-6774(88)90004-1.

[11] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, no. 1-3, pp. 181-199, 1994, doi:
10.1007/BF01581144.

[12] H. Koy and C.-P. Schnorr, “Segment LLL-reduction of lattice bases,”
in Cryptography and Lattices: Proceedings of CaLC 2001, ser.
Lecture Notes in Computer Science, J. H. Silverman, Ed. Springer,
2001, vol. 2146, pp. 67-80, doi: 10.1007/3-540-44670-2_7.

[13] P. Q. Nguyen and D. Stehlé, “Floating-point LLL revisited,” in
Advances in Cryptology-EUROCRYPT 2005 (Aarhus, Denmark,
May 22-26, 2005), ser. Lecture Notes in Computer Science, R.
Cramer, Ed. Heidelberg: Springer, 2005, vol. 3494, pp. 215-233, doi:
10.1007/11426639_13.

[14] I. Morel, D. Stehlé, and G. Villard, “H-LLL: Using Householder
inside LLL,” in Proceedings of the 2009 international symposium on
Symbolic and algebraic computation (July 29-31, 2009, Seoul,
Republic of Korea), J. R. Johnson, H. Park, and E. Kaltofen, Eds.
New York: ACM, 2009, pp. 271-278, doi: 10.1145/1576702.1576740.

[15] A. Novocin, D. Stehlé, and G. Villard, “An LLL-reduction algorithm
with quasilinear time complexity: extended abstract,” in Proceedings
of the 43rd annual ACM symposium on Theory of computing (June
6-8, 2011, San Jose, USA), L. Fortnow and S. P. Vadhan, Eds. New
York: ACM, 2011, pp. 403-412, doi: 10.1145/1993636.1993691.

[16] Saruchi, I. Morel, D. Stehlé, and G. Villard, “LLL reducing with the
most significant bits,” in Proceedings of the 2014 International
Symposium on Symbolic and Algebraic Computation (July 23-25,
2014, Kobe, Japan), K. Nabeshima, K. Nagasaka, F. Winkler, and A.
Szántó, Eds. New York: ACM, 2014, pp. 367-374, doi:
10.1145/2608628.2608645.

[17] F. Fontein, M. Schneider, and U. Wagner, “PotLLL: a polynomial
time version of LLL with deep insertions,” Designs, Codes and
Cryptography, vol. 73, no. 2, pp. 355-368, 2014, doi:
10.1007/s10623-014-9918-8.

[18] A. Neumaier and D. Stehlé, “Faster LLL-type reduction of lattice
bases,” in Proceedings of ISSAC '16 (July 20-22, 2016, Waterloo,
Ontario, Canada), S. A. Abramov, E. V. Zima, and X.-S. Gao, Eds.
New York: ACM, 2016, pp. 373-380, doi: 10.1145/2930889.2930917.

[19] C.-P. Schnorr, “Geometry of numbers and integer programming,” in
Proceedings of STACS '88, ser. Lecture Notes in Computer Science,
R. Cori and M. Wirsing, Eds. Springer, 1988, vol. 294, pp. 1-7, doi:
10.1007/BFb0035826.

[20] B. Just, “Effiziente Kettenbruchalgorithmen in beliebigen
Dimensionen,” Ph.D. dissertation, Universität Frankfurt, Frankfurt,
1987.

634

